
University of Groningen Multivariable Analysis H. Jardón-Kojakhmetov

Exam
26/01/2023, 8:30 am - 10:30 am

Instructions:

• Prepare your solutions in an ordered, clear and clean way. Avoid delivering solutions with scratches.

• Write your name and student number in all pages of your solutions.

• Clearly indicate each exercise and the corresponding answer. Provide your solutions with as much detail as
possible.

• Use different pieces of paper for solutions of different exercises.

• Read first the whole exam, and make a strategy for which exercises you attempt first. Start with those you feel
comfortable with!

Exercise 1: (1 point) Prove that f(x, y) = (ex + ey, ex + e−y) is locally invertible at every point (x, y) ∈ R2. Moreover,
if f(a) = b, what is the derivative of f−1 at b?

Solution: The Jacobian of f is

J(x, y) =

[
ex ey

ex −e−y

]
. (1)

It follows that det J = −(ex−y +ex+y), which is nonzero for all (x, y) ∈ R2. Thus, f is continuously differentiable,
and its derivative is invertible for all (x, y) ∈ R2. It follows from the inverse function theorem (slide 5, lecture 3)
that f is locally invertible at every point (x, y) ∈ R2.

Let a = (a1, a2) so that f(a1, a2) = (ea1 + ea2 , ea1 + e−a2) = (b1, b2) = b. From our previous argument we know
that there is a function f−1 such that f−1(b1, b2) = (a1, a2). From slide 8, lecture 3, it follows that

Df−1(b) =

[
ea1 ea2

ea1 −e−a2

]−1

. (2)

Exercise 2: (1.5 points) Consider the ODE x′′ + 3x′ + 2x =
1

1 + et
.

a) Find the general solution of the given ODE.

b) Make a sketch of the vector field corresponding to the homogeneous equation x′′ + 3x′ + 2x = 0.

c) Is there a relationship between the vector field of part b) and the general solution of part a)?

Solution:

a) We start by rewriting the given ODE as:

X ′ =

[
0 1
−2 −3

] [
X1

X2

]
+

 0

1

1 + et

 , (3)

where (X1, X2) = (x, x′). The homogeneous equation has solution Xh(t) = c1e
−2tu + c2e

−tv, where u, v
denote the corresponding eigenvectors:

– for u: Au = −2u →
[

u2

−2u1 − 3u2

]
=

[
−2u1

−2u2

]
→ u =

[
2
−1

]
– for v: Av = −v →

[
v2

−2v1 − 3v2

]
=

[
−v1
−v2

]
→ v =

[
1
−1

]
.
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In other words, the solution to the homogeneous problem is given by

Xh(t) = c1e
−2t

[
2
−1

]
+ c2e

−t

[
1
−1

]
=

[
2e−2t e−t

−e−2t −e−t

] [
c1
c2

]
. (4)

Hence, according to slide 9 of lecture 7, the fundamental matrix is M(t) =

[
2e−2t e−t

−e−2t −e−t

]
. It follows that

M(t)−1 =

[
e2t e2t

−et −2et

]
. Next we follow slide 9 again to compute:

∫ t

0

M(s)−1b(s)ds =

∫ t

0


e2s

1 + es

−2es

1 + es

ds =

∫ t

0


u− 1

u
du

−2es

1 + es
ds

 =

[
1 + et − ln(1 + et)

−2 ln(1 + et)

]
(5)

where we have made the change of variable u = 1 + es. Notice that we have also disregarded the constants
because we only look for a particular solution, and such constants can otherwise be absorbed by the c1 and
c2 constants of the homogeneous solution. So now we can write the full solution as

X(t) =

[
2e−2t e−t

−e−2t −e−t

]([
c1
c2

]
+

[
1 + et − ln(1 + et)

−2 ln(1 + et)

])
. (6)

Finally, the solution x(t) corresponds to the first component of X(t). After relabeling the constants we thus
obtain:

x(t) = c1e
−2t + c2e

−t + (e−2t + e−t) ln(1 + et). (7)

b) The vector field looks like:

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

c) In principle no. However, one can expect that there is not much difference between the solutions of the
homogeneous problem and the full problem since the particular solution vanishes exponentially fast.
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Exercise 3: (1 point) Consider f(t) =

∫ t2

t

ds

s+ sin s
for t > 1. Compute the derivative of f .

Hint: it may be useful to write f as the composition of two functions, one of which is (x, y) 7→
∫ y

x

ds

s+ sin s
.

Solution: Using the hint, let g(x, y) =

∫ y

x

ds

s+ sin s
and h(t) = (t, t2). Therefore f(t) = (g ◦ h)(t). We can now

use the chain rule to compute the derivative. Notice that:

D1g(x, y) = − 1

x+ sinx

D2g(x, y) =
1

y + sin y

Dh(t) =

[
1
2t

] (8)

where the first two equalities follow from the fundamental theorem of calculus in one variable. So, following slide
12 of lecture 1 we have:

f ′(t) =

[
− 1

t+ sin t

1

t2 + sin t2

] [
1
2t

]
= − 1

t+ sin t
+

2t

t2 + sin t2
. (9)

Exercise 4: (1 point) What is the n-dimensional volume of the region

{x = (x1, . . . , xn) ∈ Rn | xi ≥ 0 for all i = 1, . . . , n and x1 + 2x2 + · · ·+ nxn ≤ n}?

Solution: Dealing with the coefficients is a bit annoying, so let yi :=
n

i
xi. Then the given region is alternatively

given by
Ry = {y = (y1, . . . , yn) ∈ Rn | yi ≥ 0 for all i = 1, . . . , n and y1 + y2 + · · ·+ yn ≤ 1} . (10)

Since what we are doing is applying a linear transformation, it follows from slide 9 of lecture 9 that the required

volume will be given by
n

1
· n
2
· · · n

n
voln Ry =

nn

n!
voln Ry. So now we just compute the n-dimensional volume of

Ry.

• Let n = 1. Then vol1 Ry = 1.

• Let n = 2. Then vol2 Ry =

∫ 1

0

∫ 1−x1

0

dx2dx1 =

∫ 1

0

(1− x1)dx1 =

(
x1 −

x2
1

2

) ∣∣∣∣1
0

=
1

2
.

• Let n = 3. Then

vol3 Ry =

∫ 1

0

∫ 1−x3

0

∫ 1−x2−x3

0

dx1dx2dx3 =

∫ 1

0

∫ 1−x3

0

(1− x2 − x3)dx2dx3

=

∫ 1

0

(
1− x3 −

(1− x3)
2

2
− x3(1− x3)

)
dx3

=

∫ 1

0

(
1

2
− x3 +

x2
3

2

)
dx3 =

(
1

2
x3 −

x2
3

2
+

x3
3

6

) ∣∣∣∣1
0

=
1

6
.

(11)

It is thus safe to assume that voln Ry =
1

n!
. Therefore, the volume of the given region is

nn

(n!)2
.

The proof by induction of the above argument is not necessary to get full points, we provide
it here for completeness:
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For n ≥ 1, let An denote the n-volume of Ry. From the formulas above we see that we can write:

An =

∫ 1

0

∫ 1−x1

0

∫ 1−x1−x2

0

· · ·
∫ 1−x1−···−xn−1

0

dxn · · ·dx2dx1.

Let us define

Bn(t) =

∫ t

0

∫ t−x1

0

∫ t−x1−x2

0

· · ·
∫ t−x1−···−xn−1

0

dxn · · ·dx2dx1.

Then
An = Bn(1).

From above it follows that B1(t) = t, B2(t) =
t2

2
, B3(t) =

t3

6
. A natural guess is that Bn(t) =

tn

n!
. One can

show this by induction: assume that Bn(t) =
tn

n!
, and notice that

Bn+1(t) =

∫ t

0

Bn (t− x1) dx1.

It follows that:

Bn+1(t) =

∫ t

0

Bn (t− x1) dx1 = −
[
(t− x1)

n+1

(n+ 1)!

]t

0

=
tn+1

(n+ 1)!
.

Thus, indeed An = Bn(1) =
1

n!
.

Exercise 5: (1 point) Let S be a closed curve in R2 and C the unit circle in R2. Suppose that S and C are diffeomorphic.
What is the 2-dimensional volume of the curve S (vol2 S)? Justify your answer in full detail.

Hints and remarks: we are asking for the 2-volume, and not the 1-volume, of the 1-dimensional curve S, and not
of the region enclosed by it; for this exercise you may assume that “S and C are diffeomorphic” means that there is a
Cr-function f , r ≥ 1, with Cr inverse, such that f : S → C and f−1 : C → S.

Solution: There are several ways to obtain the answer. The simplest is to recall that you already know that the
2-dimensional volume of the unit circle in R2 is zero. Since S is diffeomorphic to C, then S is a 1-dimensional
manifold in R2, and then use slide 6 of lecture 10 to conclude that vol2 S = 0. Another is to invoke the change of
variables formula.

Exercise 6: (1.5 points) Let ω be the n-form in Rn defined by ω(e1, . . . , en) = 1, where {e1, . . . , en} is the canonical

basis of Rn. Let v1, . . . , vn be vectors in Rn given by vi =
∑

1≤j≤n

aijej , where the aij ’s are real scalars. Prove that

a) ω(v1, . . . , vn) = detA, where A = [aij ]i,j=1,...,n is the n× n matrix with elements aij .

b) ω = dx1 ∧ · · · ∧ dxn.

Solution:

a) It suffices to notice that ω(v1, . . . , vn) = ω(Ae1, . . . , Aen) = A∗ω(e1, . . . , en), and to recall slide 13 of lecture
14 to prove the claim.

b) Notice that there is only one elementary n-form in Rn. We then have that dx1 ∧ · · · ∧ dxn(v1, . . . , vn) =

det

a11 · · · a1n
...

. . . · · ·
an1 · · · ann

 = detA, and hence equal to ω.
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Exercise 7: (1 point) Let z1 = x1+ ıy1, z2 = x2+ ıy2 be coordinates in C2. Compute the integral of dx1∧dy1+dy1∧dx2

over the part of the locus of the equation z2 = zk1 where |z1| < 1, oriented by Ω = sgn dx1 ∧ dy1.

Solution: Let r ∈ [0, 1) and θ ∈ [0, 2π]. Then we define the parametrization

γ : (r, θ) 7→ (r cos θ, r sin θ, rk cos(kθ), rk sin(kθ)), (12)

which indeed corresponds to the locus of z2 = zk1 . We have

D1γ =


cos θ
sin θ

krk−1 cos(kθ)

krk−1 sin(kθ)

 , D2γ =


−r sin θ
r cos θ

−krk sin(kθ)

krk cos(kθ)

 (13)

Notice that the parametrization is orientation preserving since sgn dx1 ∧ dy1(D1γ,D2γ) = r ≥ 0 and is only zero
at the “bad point in the boundary” r = 0.

Next we have that

(dx1 ∧ dy1 + dy1 ∧ dx2)(D1γ,D2γ) = det

[
cos θ −r sin θ
sin θ r cos θ

]
+ det

[
sin θ r cos θ

krk−1 cos(kθ) −krk sin(kθ)

]
= r − krk(sin(kθ) sin θ + cos(kθ) cos θ).

(14)

Therefore, the integral we are looking for is

I =

∫ 1

0

∫ 2π

0

(r − krk(sin(kθ) sin θ + cos(kθ) cos θ))dθdr

=

∫ 1

0

∫ 2π

0

rdθdr −
∫ 2π

0

∫ 1

0

krk(sin(kθ) sin θ + cos(kθ) cos θ)drdθ

= π − krk+1

k + 1

∫ 2π

0

(sin(kθ) sin θ + cos(kθ) cos θ)dθ.

(15)

Arriving to the previous expression is enough to get full points.

Solving the remaining integral gives +0.5 points, here we leave the solution:

• If k = 0, then I = π.

• If k = 1, then I = π

(
1− r2

2

)
• If k > 1, then, again, I = π. The result follows immediately from the fact that, in this case, sin(kθ) sin θ
and cos(kθ) cos θ are 2π-periodic with zero average.

Exercise 8: (1 point) Find the flux of the vector field F⃗

 x
y
z

 = ra

 x
y
z

, where a is a number and r =
√

x2 + y2 + z2,

through the surface S, where S is the sphere of radius R oriented by the outward-pointing normal.

Hint: the result is a function of a and R.

Solution: It is most convenient to parametrize the sphere of radius R using spherical coordinates, that is by
γ : (θ, ϕ) 7→ (R cos θ cosϕ,R sin θ cosϕ,R sinϕ) with θ ∈ [0, 2π] and ϕ ∈ [−π/2, π/2]. To check if this is an
orientation preserving parametrization we notice that

D1γ =

−R sin θ cosϕ
R cos θ cosϕ

0

 , D2γ =

−R cos θ sinϕ
−R sin θ sinϕ

R cosϕ

 , (16)
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and therefore we have

det

R cos θ cosϕ −R sin θ cosϕ −R cos θ sinϕ
R sin θ cosϕ R cos θ cosϕ −R sin θ sinϕ

R sinϕ 0 R cosϕ


= R sinϕ(R2 sin2 θ sinϕ cosϕ+R2 cos2 θ cosϕ sinϕ) +R cosϕ(R2 cos2 θ cos2 ϕ+R2 sin2 θ cos2 ϕ)

= R3 sinϕ(sinϕ cosϕ) +R3 cosϕ(cos2 ϕ) = R3 cosϕ ≥ 0.

(17)

Hence, indeed, the proposed parametrization is orientation preserving. Next, following slide 10 of lecture 13 we
have: ∫

S

ΦF⃗ =

∫ 2π

0

∫ π/2

−π/2

det

Ra+1 cos θ cosϕ −R sin θ cosϕ −R cos θ sinϕ
Ra+1 sin θ cosϕ R cos θ cosϕ −R sin θ sinϕ

Ra+1 sinϕ 0 R cos θ

 dϕdθ

=

∫ 2π

0

∫ π/2

−π/2

Ra+3 cosϕdϕdθ = 4πRa+3.

(18)
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